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Interchannel interaction of optical solitons

Avner Peleg, Misha Chertkov, and Ildar Gabitov
Theoretical Division, LANL, Los Alamos, New Mexico 87545, USA

~Received 26 December 2002; published 15 August 2003!

We study interaction between two solitons from different frequency channels propagating in an optical fiber.
The interaction may be viewed as an inelastic collision, in which energy is lost to continuous radiation due to
small but finite third order dispersion. We develop a perturbation theory with two small parameters: the third
order dispersion coefficientd3, and the reciprocal of the interchannel frequency difference, 1/b. We find that
amplitude of the leading contribution to radiation emitted during the collision is proportional tod3 /b2. The
source term for this radiation is of the form that would be generated by a variation in the second order
dispersion coefficient. In addition, the only other effects up to the combined third order of the perturbation
theory are phase changes and position shifts of the solitons. Solitons propagating in a given frequency channel
interact via radiation emitted due to collisions with many solitons from other frequency channels. We show that
this intrachannel interaction effect, induced by many interchannel collisions, is identical to the radiation
mediated intrachannel interaction effect observed for solitons propagating under the influence of disorder in the
second order dispersion coefficient.

DOI: 10.1103/PhysRevE.68.026605 PACS number~s!: 42.81.Dp, 42.81.2i, 42.65.Tg
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I. INTRODUCTION

Modern high speed optical fiber communication syste
extensively use multifrequency channel technology~wave-
length division multiplexing, WDM, see, e.g., Ref.@1#!. One
of the major limitations on the performance of WDM sy
tems is caused by the nonlinear interchannel interaction
data signals from different channels. We investigate this p
nomenon using the conventional optical soliton as an
ample. In an ideal case soliton bit patterns from differe
channels would not experience any distortion due to the e
tic character of soliton-soliton interaction. However, the
exist other phenomena that are able to break the elastic
ture of the interchannel interaction. The leading effect of t
kind is associated with third order dispersion, which is t
linear dependence of the chromatic dispersion on the wa
length of the carrier frequency. In this inelastic case, co
sions between solitons from different frequency channels~in-
terchannel collisions! lead to emission of radiation
corruption of the soliton shape, shift in soliton position~soli-
ton walk off from the assigned time slot!, and other undesir-
able effects. Moreover, the radiation emitted due to int
channel collisions might, in its turn, lead to interactio
between solitons from the same frequency channel~intra-
channel interaction!. Therefore, it is important to have a re
alistic estimation for the intensity of the radiation emitted,
well as for the change in the soliton parameters due to
interchannel interaction.

The interaction between ideal solitons can be mode
using the ideal nonlinear Schro¨dinger equation~NLSE! @2,3#.
This ideal interaction has been studied in detail@4–6#, and is
by now well understood. In contrast, accurate analysis
interchannel interactions between nonideal solitons is a lo
standing problem, which was never addressed in the p
The main problem in this case is to develop a perturba
theory around the multisoliton solutions of the ideal nonl
ear Schro¨dinger equation. In spite of existence of exact e
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pressions for the multisoliton solutions of the ideal NLS
direct perturbative analysis around these solutions, to
best of our knowledge, has not yet been successful.

In this paper we solve this long-standing problem a
analyze the effects of inelastic collisions between solito
from different frequency channels in the presence of th
order dispersion.~Figure 1 shows a cartoon of the collisio
process.! We calculate the spectrum and intensity of the
diation emitted in the frequency channels of the collidi
solitons as a result of the collision. We also calculate
collision induced change in the soliton parameters.

FIG. 1. Schematic description of the collision between two so
tons from different frequency channels. The straight arrows den
the group velocity of the solitons, and the curly arrows denote
diation emitted by each of the two solitons in its own frequen
channel.
©2003 The American Physical Society05-1
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achieve this goal we, first, find by means of the singu
perturbation technique proposed by Kaup@7# a single-soliton
solution, which is stationary~independent of position alon
the fiber!, taking into account third order dispersion. It
assumed that even if an initial pulse pumped into the opt
fiber is not exactly of this stationary form, it evolves into th
stationary solution after a transient@8#. The form of this sta-
tionary solution is compared with results obtained in ear
studies of single-soliton propagation in the presence of th
order dispersion@9,10#. We then use two such stationa
pulses, propagating with different group velocities, as
initial condition for the collision problem. To find the effec
of the collision we develop a perturbation theory withtwo
small parameters: the dimensionless third order disper
coefficientd3 and the reciprocal of the dimensionless inte
channel frequency difference 1/b. ~Nonanalytical terms are
neglected in this perturbation theory, which is the stand
case. However, it is possible to show that even if such te
do exist their contribution to any collision induced effec
can be neglected ifd3 is sufficiently small.!

We find that the amplitude of the emitted radiation is p
portional tod3 /b2. The source term for this radiation has th
same form that would be produced by a variation with
spect to distance along the fiber of the second order dis
sion coefficient. The soliton amplitude and the phase velo
do not acquire any change in perturbative corrections up
third order.This explains why accurate analysis up to t
relatively high, third, order is necessary.It is also found that
soliton propagation in a given channel experiencing ma
collisions with solitons from other channels can be extrac
from the same equation that describes propagation of s
tons in a fiber with weak disorder in the second order disp
sion coefficient.~The latter problem was addressed in R
@11#.! This observation means that results obtained in R
@11# can be readily applied to describe the intrachannel in
action between solitons caused by many interchannel c
sions.

The material in the manuscript is organized as follow
The stationary single-soliton solution of the nonlinear Sch¨-
dinger equation in the presence of nonzero third-order
persion is perturbatively constructed in Sec. II. This stati
ary solution is then used as the initial condition for the tw
soliton interchannel collision problem. Section III is devot
to description of the two-soliton collision. The general fo
mulation of the perturbation method is presented in S
III A, while Secs. III B, III C, and III D describe the first
second, and third orders of the perturbation theory, resp
tively. Section IV is reserved for conclusions. Some auxilia
calculations are detailed in three Appendixes.

II. THE EFFECT OF THIRD ORDER DISPERSION
ON A SINGLE SOLITON

A. Introduction

Propagation of an electric field wave packetC(t,z)
through an optical fiber under the influence of third ord
dispersion is described by the following modification of t
nonlinear Schro¨dinger equation~see Ref.@2#, p. 44!:
02660
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i ]zC1] t
2C12uCu2C5 id3] t

3C . ~2.1!

Here, z is the dimensionless position along the fiber,z
5x(kP0/2), x is the actual position along the fiber,P0 is the
peak soliton power, andk is the Kerr nonlinearity coeffi-
cient. The dimensionless retarded time ist5t/t0, wheret is
the retarded time associated with the reference channel
t0 is the soliton width. The spectral widthn0 is given by
n051/(p2t0), and the channel spacing byDn5bn0. The
pulse envelope isC5E/AP0, whereE is the actual electric
field. The dimensionless second and third order dispers
coefficients are given byd5215b2 /(kP0t0

2) and d3

5b3 /(3kP0t0
3), whereb2 andb3 are the second and thir

order chromatic dispersion coefficients, respectively. T
typical setup for a short pulse optical fiber experiment ist0
50.5 ps, b2521 ps2/km, b350.1 ps3/km, k510 W21

km21, P050.4W, Dn52.0331012 Hz, and the total energy
of the soliton is 4310213 J. These values correspond tod3
50.066 667, andb510.

The termid3] t
3C ~whered3 is a small constant! on the

right-hand side of Eq.~2.1! accounts for the effect of third
order dispersion. Terms of higher order, such as terms w
higher temporal derivatives, and terms accounting for ty
of nonlinearity other than the Kerr nonlinearity, can be n
glected in the majority of practical cases. Equation~2.1! is
global in the sense that it explains simultaneous propaga
through many frequency channels. Notice that ford3Þ0, Eq.
~2.1! is not integrable. However, in many practical casesd3
!1, allowing a perturbative calculation about the integra
d350 limit.

Fiber losses in Eq.~2.1! are neglected. In practice, thi
can be achieved by compensating for losses in a fiber s
by means of distributed optical amplification, e.g., Ram
amplification. Compensation for fiber lossesg can also be
achieved without distributed amplification@12# by a proper
choice of the parametersDn, b2 , b3, andt0. Indeed, ift0

!Ab2 /g andDn@(gt0
2)/b3, the term in Eq.~2.1! respon-

sible for losses can be neglected. Note that Eq.~2.1! can also
be used for description of optical pulse dynamics in tw
types of fiber links with in-line amplifiers:~i! optical links
lumped optical amplifiers and fiber spans with exponentia
decreasing spatial dispersion profile@13#; ~ii ! optical links
with distributed in-line amplification.

B. Stationary single-soliton solution of Eq.„2.1…

Let us assume thatd3!1, and derive perturbatively a
z-independent~stationary! single-soliton solution of Eq.
~2.1!. Combination of two such well separated int stationary
solutions will later be used as the initial condition for th
two-soliton collision problem.

Whend350, the single-soliton solution of Eq.~2.1! in a
given frequency channel~i.e., characterized by the frequenc
shift b relative to the reference channel! is described by

cb~ t,z!5hb

exp@ iab1 ib~ t2yb!1 i ~hb
22b2!z#

cosh@h~ t2yb22bz!#
,

~2.2!
5-2
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whereab ,hb , andyb are the soliton phase, amplitude, a
position, respectively. We shall call this solution the ideal,
bare soliton, solution, and refer to Eq.~2.1! with d350 as
the ideal NLSE.

To find a stationary single-soliton solution of Eq.~2.1!
with d3Þ0 one first makes the following substitution:

Cb~ t,z!5eixbC̃b~x!, ~2.3!

wherex5h̃btb ,

tb5t2yb22b~113d3b/2!z, ~2.4!

h̃b5~113d3b!21/2hb ~2.5!

and

xb5ab1b~ t2yb!1@hb
22b2~11d3b!#z. ~2.6!

This substitution accounts for effects caused by thed3b shift
in the second order dispersion coefficient in channelb.
Thus, our perturbation theory does not require smallnes
the shift in the second order dispersion coefficient. Fr
Eqs.~2.4! and~2.5! one can see that the two main effects
thed3b shift in the second order dispersion coefficient ar
3d3b/2 increase in the group velocity~for b.0) and an
increase of the pulse width by a factor of (113d3b)1/2 ~for
b.0). Using this substitution one obtains the followin

equation for the functionC̃b :

hb
2C̃b92hb

2C̃b12uC̃bu2C̃b5
id3hb

3

~113d3b!3/2
C̃b- . ~2.7!

Let us now assume thatd3!1 and look for perturbative so
lution of Eq. ~2.7!,

C̃b~x!5C̃b0~x!1C̃b1~x!1•••, ~2.8!

where

C̃b0~x!5
hb

cosh~x!
~2.9!

is the zero order solution, andC̃b1 is the first order~in d3)

correction. SubstitutingC̃b(x) into Eq. ~2.7! one arrives at

L̂hbS C̃b1~x!

C̃b1* ~x!
D 5

id3hb
4

~113d3b!3/2
C̃b0- ~x!S 1

1D , ~2.10!

where the operatorL̂hb
is

L̂hb
[hb

2F ~]x
221!ŝ31

2

cosh2~x!
~2ŝ31 i ŝ2!G . ~2.11!

This operator describes evolution of a linear perturbat
around the single soliton~2.2! of the ideal NLSE. The com-
02660
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plete set of the eigenfunctions ofL̂hb
includes the infinite

~continuous! set of unlocalized modeswk and w̄k , obeying

L̂hb
wk5~k21hb

2 !wk , L̂hb
w̄k52~k21hb

2 !w̄k . ~2.12!

There are also four discrete~localized! modes in the spec
trum, f 0 , f 1 , f 2, and f 3, defined as

L̂hb
f 050, L̂hb

f 150,

L̂hb
f 2522hb

2 f 1 , L̂hb
f 3522hb

2 f 0 . ~2.13!

The complete system of eigenfunctions of the ideal NLS
found by Kaup@7#, is described in Appendix A. The unloca
ized eigen-functions can be written aswk(x)5 f k/hb

(x) and

w̄k(x)5 f̄ k/hb
(x), where f k and f̄ k are the eigenfunctions o

L̂hb
at hb51 introduced in Appendix A.

It is natural to expandC̃b1(x) in series in the eigenfunc
tions of L̂hb

,

S C̃b1~x!

C̃b1* ~x!
D 5 c̃0f 0~x!1 c̃1f 1~x!1 c̃2f 2~x!1 c̃3f 3~x!

1E
2`

1` dk

2p
@ckwk~x!1ck* w̄k~x!#. ~2.14!

Expansion of the right-hand side of Eq.~2.10! over these
eigenfunctions is

id3hb
4

~113d3b!3/2
C̃b0- ~x!S 1

1D
5

d3hb
2

4~113d3b!3/2 E2`

1`

dkF k~k/hb1 i !2wk~x!

cosh@~pk!/~2hb!#

2
k~k/hb2 i !2w̄k~x!

cosh@~pk!/~2hb!#
G1

id3hb
4

~113d3b!3/2
f 1~x!.

~2.15!

Substituting Eqs.~2.14! and ~2.15! into Eq. ~2.10!, and also
using relations~2.12! and ~2.13!, one obtains

E
2`

1` dk

2p
@~k21hb

2 !ckwk~x!2~k21hb
2 !ck* w̄k~x!#

22hb
2 c̃3f 0~x!22hb

2 c̃2f 1~x!

5
d3hb

2

4~113d3b!3/2 E2`

1`

dkF k~k/hb1 i !2wk~x!

cosh@~pk!/~2hb!#

2
k~k/hb2 i !2w̄k~x!

cosh@~pk!/~2hb!#
G1

id3hb
4

~113d3b!3/2
f 1~x!.

~2.16!
5-3
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Projecting the last equation on the eigenfunctions ofL̂hb
,

one gets the following expressions for the expansion coe
cients

c̃252
id3hb

2

2~113d3b!3/2
, c̃350 ~2.17!

and

ck5
pd3k~k/hb1 i !

2~113d3b!3/2~k/hb2 i !cosh@~pk!/~2hb!#
. ~2.18!

Using Eqs.~A5! and~A6! for the continuous spectrum eigen

functions, one can simplify the expression forC̃b1(x),

S C̃b1~x!

C̃b1* ~x!
D 5 c̃0f 0~x!1 c̃1f 1~x!1 c̃2f 2~x!

2
id3hb

2

2~113d3b!3/2
I ~x!S 1

21D , ~2.19!

where the functionI (x) is defined by

I[E
2`

1`

dk
k@k cos~kx!tanh~x!1 1

2 ~k221!sin~kx!#

~k211!cosh@~pk!/2#
.

~2.20!

For illustrative purposes we showC̃00 and 2 i C̃01/d3 to-
gether in Fig. 2.

Comparing Eqs.~2.17! and ~2.20! with Eq. ~A15!, one
concludes that one effect of third order dispersion is
O(d3) frequency change, which is not accompanied by
corresponding change in the group velocity. Such an ef
was observed earlier by other authors who studied the e

FIG. 2. Ideal (d350) soliton solution in theb50 channel,

uC00u5C̃00, solid line, and the principal part of the respective fi

order ~in d3) correction, uC01u/d352 i C̃01/d3, dashed line, are
shown as functions of the time,t.
02660
-

n
a
ct
o-

lution of an initially ideal soliton under the influence of thir

order dispersion@9,10#. Even though the correctionC̃b1(x)
gets contributions from the continuous spectrum eigenfu
tions, the existence of the double poles atk56 i in the inte-
grand appearing on the rhs of Eq.~2.20! guarantees tha

C̃b1(x) is localized, i.e., it decays exponentially inx for x
@1. In addition, linear stability of the stationary solutio

C̃b01C̃b1, was proved and numerically confirmed in Re
@8#. Notice that the coefficientsc̃0 and c̃1 in Eq. ~2.19!,
which correspond toO(d3) corrections to the soliton’s phas
and position, remain arbitrary. For convenience we sh

choosec̃05 c̃150, thus obtaining thatC̃b1(x) is odd in x
and is purely imaginary. One should also point out that
perturbation theory presented here is valid for any value
b, providedd3!1 and 11bd3@d3. The last inequality is
the condition that the effect of the second order dispers
coefficient in channelb essentially exceeds the effect of th
third order dispersion coefficient. Finally, by a simila
method one can obtain theO(d3

2) and higher order
z-independent corrections to the stationary solution fou
here@8#.

III. TWO-SOLITON COLLISION ACCOUNTING
FOR THIRD ORDER DISPERSION

A. General formulation of the perturbation method

We now turn to calculation of the effects caused by c
lision of two solitons from different frequency channels. W
assume that the initial condition for the solitons, far aw
from the collision region, is given by a sum of the stationa
single-soliton solutions found in the preceding section. Sin
these solutions are stable, even if the initial shape of a p
is not precisely of the stationary form it evolves to it after
transient. Thus, no radiation and no change in the sol
parameters are caused by the free propagation of these
tionary pulses before the collision. We develop a double p
turbation theory with the two small parametersd3 and 1/b.
For simplicity, and without any loss of generality, one of t
two channels is chosen as a reference one withb50. We
assume that for the second channelubu@1. ~In practice, this
condition is satisfied very well even for neighboring cha
nels.! As it is shown in Appendix B, expansion of the exa
two-soliton solution of the ideal NLSE@Eq. ~2.1! with d3
50] in a series in 1/b is given by

c two5c01cb1f01fb1f2b1f2b1O~1/b3!,
~3.1!

where c0 and cb are O(1) single-soliton solutions of the
ideal NLSE described by Eq.~2.2!. The termsf0 andfb are
corrections of the leading order 1/b to these single-soliton
solutions in channels 0 andb, respectively. The termsf2b
andf2b oscillate with frequencies2b and 2b, respectively.
These terms are of leading order 1/b2, and are exponentially
small outside of the collision region. Furthermore, outs
the collision regionf0 andfb generate only small constan
corrections to the parameters ofc0 and cb , so thatc two
reduces to a sum of the two ideal single-soliton solutio
5-4
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This last result remains valid in any order in 1/b. We also
show in Appendix B that forubu@1 the only effects of col-
lision between two ideal solitons areO(1/b) change of
phase andO(1/b2) position shift~time retardation!.

It is therefore natural to look for a two-soliton solution
Eq. ~2.1! with d3Þ0 in the following form:

C two5C01Cb1F. ~3.2!

Here C0 and Cb are stationary single-soliton solutions
Eq. ~2.1! with d3Þ0 in channels 0 andb, respectively, and
F is a smallz-dependent correction to these solutions, a
ing from the collision only. SubstitutingC two into Eq. ~2.1!,
one arrives at

i ]zF1] t
2F14uC01Cbu2F12~C01Cb!2F*

524uCbu2C024uC0u2Cb22C0* Cb
222Cb* C0

2

24~C01Cb!uFu222~C0* 1Cb* !F222uFu2F

1 id3] t
3F. ~3.3!

Let us calculate, for example, the collision induced c
rection F0 to the stationary pulse in the reference chann
Then, the total pulse in the reference channel is given
C0

t 5C01F0. Calculation of the correctionFb to the sta-
tionary pulse in theb channel is similar. By analogy with
Eq. ~3.1!, one substitutes

F5F01Fb1F2b1F2b1•••, ~3.4!

whereF2b and F2b correspond to terms in channels2b
and 2b, respectively, and the ellipses represents higher o
terms in other channels. SinceF0 oscillates together with
C0, and sinceubu@1, one can use resonant approximatio
simply neglecting exponentially small contributions comi
from terms rapidly oscillating with respect tot and z. F0
dynamics is governed by

i ]zF01] t
2F014uC0u2F012C0

2F0*

524uCbu2C024uCbu2F024C0~CbFb* 1Cb* Fb!

24C0* CbF2b22Cb
2F2b* 24C0uF0u222C0* F0

2

24C0uFbu224F0~CbFb* 1Cb* Fb!

1 id3] t
3F0 . ~3.5!

In writing Eqs. ~3.4! and ~3.5! we neglected terms of orde
1/b3 and higher. Indeed, such terms only contribute
O(1/b3) or higher order effects that already exist in col
sions between ideal solitons. SubstitutingC0(t,z)

5C̃0(h̃0)exp(ix0) and F0(t,z)5F̃0(h̃0)exp(ix0), where h̃0

5h0t and x05a01h0
2z @see Eqs.~2.3!–~2.6! with b50],

one derives
02660
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]zF̃02 i @~] t
22h0

2!F̃014uC0u2F̃012C̃0
2F̃0* #

54i F uCbu2C̃01uCbu2F̃01C̃0~CbFb* 1Cb* Fb!

1C̃0* CbF2b1
1

2
Cb

2F2b* 1C̃0uF0u21
1

2
C̃0* F̃0

2

1C̃0uFbu21F̃0~CbFb* 1Cb* Fb!G1d3] t
3F̃0 . ~3.6!

Three different regions inz are naturally separated. Th
first region is the small interval@z02 z̃/ubu,z01 z̃/ubu# in the
vicinity of the collision pointz0, where ubu@ z̃@1. In this

regionF̃0 acquires fast change with respect toz as a result of
collision. SinceDz;1/b, in the first order of the perturba

tion theory the]zF̃0 and uCbu2C̃0 terms give the leading

contributions to Eq.~3.6!, while the ] t
2F̃0 term can be ne-

glected together with all other terms. In the next orders of
perturbation theory one should carefully consider contrib

tions coming from terms such as] t
2F̃0 , d3] t

3F̃0, as well as
contributions coming from interaction terms such

uCbu2C̃0 , C̃0CbFb* , etc. In the precollision regionz,z0

2 z̃/ubu and in the postcollision regionz.z01 z̃/ubu, the
strength of the interaction between the two solitons is ex

nentially small, so that the termuCbu2C̃0 and all other inter-
action terms can be neglected. Thus, these two regions
respond to the free propagation of the stationary pulse be
and after the collision. Indeed, the description of the pro
gation ofF0 given by Eq.~3.6! is exactly equivalent to the
description given by substituting the completesingle-soliton
solutionC0

t 5C01F0 into Eq. ~2.1!.
It follows, from what is explained above, that in order

obtain F0 one has to solve and subsequently match th
Cauchy problems imposed atz52`, z5z02 z̃/ubu and z

5z01 z̃/ubu, respectively. Matching means that the initi
conditions atz5z02 z̃/ubu, and z5z01 z̃/ubu are obtained
from the solutions found in the (2`,z02 z̃/ubu# and the

@z02 z̃/b,z01 z̃/ubu# regions, respectively. As we shall se
later, the results of these calculations are not sensitive to
specific value of the collision region cutoff parameter,z̃.

The correctionF̃0 and the complete solutionC̃0
t 5C̃0

1F̃0 are obtained in the form of a perturbation series. T
is, in the collision region one substitutes

F̃0~ h̃0 ,z!5F̃01~ h̃0 ,z!1F̃02~ h̃0 ,z!1•••, ~3.7!

C̃0~ h̃0!5C̃00~ h̃0!1C̃01~ h̃0!1•••, ~3.8!

and

Cb~ h̃b ,z!5eixb@C̃b0~ h̃b!1C̃b1~ h̃b!1•••# ~3.9!

into Eq. ~3.6!, and linearizes the result with respect to t
two small parametersd3 and 1/b. Index notations introduced
5-5
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in Eqs.~3.7!–~3.9! are as follows.F̃01 and F̃02 account for
the first and second combined order corrections with res
to both small parametersd3 and 1/b. The stationary zero

order termsC̃00 and C̃b0 in the expansions~3.8! and ~3.9!
correspond to the bare~ideal! solitons given in Eq.~2.9! with
b50 and genericb, respectively. The stationary correctio

termsC̃01 andC̃b1, which are given by Eqs.~2.14!, ~2.17!,
and ~2.18! with b50 and generalb, respectively, are
O(d3). In the free propagation region, one substitutesC0

t

5exp(ix0)(C̃01F̃0) into Eq. ~2.1! and linearizes it with re-
spect tod3 and 1/b.

Contributions toF̃ of first, second, and third combine
orders will be found as solutions of the respective line
inhomogeneous equations obtained by this perturba
method. To analyze the free~after collision! propagation of

F̃ one needs to projectF̃ onto the set of eigenfunctions o
L̂h0

. This procedure allows one to easily separate the par

F̃0, corresponding to changes in the soliton paramet
from the part corresponding to emitted radiation. The exp

sion of F̃0 in the series over the eigenfunctions ofL̂h0
is

S F̃0~ h̃0!

F̃0* ~ h̃0!
D 5(

i 50

3

ãi f i~ h̃0!1S ṽ0

ṽ0*
D

5(
i 50

3

ãi f i~ h̃0!1E
2`

1` dk

2p
@ak~z!wk~ h̃0!

1ak* ~z!w̄k~ h̃0!#, ~3.10!

where ṽ0 corresponds to the radiation~unlocalized! part of

F̃0.

B. First order perturbation theory

Let us consider propagation of the soliton in the preco

sion region. We find it convenient to choose suchF̃01 at z
52` that coincides with theO(1/b) term in the z!z0
21/ubu asymptotic form of the expansion of the ideal tw

soliton solution~B1!. Thus,F̃01(h̃0 ,2`) is proportional to
the sixth term on the right-hand side of Eq.~B6!,

F̃01~ h̃0 ,2`!5 ida01
(0)inC̃00, ~3.11!

where

da01
(0)in52

2hb~113d3b!1/2

~113d3b/2!ubu
. ~3.12!

In Eq. ~3.12! and the following equations the superscriptin
stands for initial values of phase, position, etc., while
superscriptout represents final values of the same para
eters. TheO(d3) part of the initial condition is taken to b

C̃01(h̃0).
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Let us now substituteC0
t 5exp(ix0)(C̃001C̃011F̃01) into

Eq. ~2.1!. TheO(d3) part of the resulting equation is simpl

Eq. ~2.10!, whose solution isC̃01(h̃0). To analyze the
O(1/b) part of the equation, one defines

x̃0
in5a01da01

(0)in1h0
2z, ~3.13!

where da01
(0)in is given by Eq.~3.12!. We then substitute

C̃00exp(ix̃0
in) instead of exp(ix0)(C̃001F̃01) into Eq. ~2.1!.

Clearly, C̃00exp(ix̃0
in) is a solution of the equation up to or

der 1/b, which obeys the initial condition~3.11!. Thus, one
finds

F̃01~ h̃0 ,z<z02 z̃/ubu!5 ida01
(0)inC̃00. ~3.14!

In the collision region Eq.~3.6! reduces to

]zF̃0154i uCb0u2C̃005
4ih0hb

2

cosh~ h̃0!cosh2~ h̃b!
. ~3.15!

Integrating Eq.~3.15! over the collision region, one finds

F̃01~ h̃0 ,z01 z̃/ubu!2F̃01~ h̃0 ,z02 z̃/ubu!

5
4ih0hb

2

cosh~ h̃0!
E

z02 z̃/ubu

z01 z̃/ubu dz8

cosh2~ h̃b!
. ~3.16!

Since the integrand on the rhs of Eq.~3.16! is sharply peaked
in the vicinity of the collision pointz0, the integration limits
in Eq. ~3.16! can be replaced by2` and `, respectively.
Performing the integration and using the initial conditio
~3.14! at z5z02 z̃/ubu, one arrives at

F̃01~ h̃0 ,z01 z̃/ubu!5 ida01
(0)outC̃00, ~3.17!

where

da01
(0)out52da01

(0)in . ~3.18!

In the post-collision region one can show in a simil
manner that

F̃01~ h̃0 ,z>z01 z̃/ubu!5 ida01
(0)outC̃00. ~3.19!

Comparing Eqs.~3.19! and~3.14!, we see that the only effec
of the collision in the first order of the perturbation theory
a change of the soliton phase,

Da01
(0)5da01

(0)out2da01
(0)in5

4hb~113d3b!1/2

~113d3b/2!ubu
. ~3.20!

Notice that Eq.~3.20! is also consistent with the result~B8!
obtained in Appendix B, from the 1/b expansion of the exac
two-soliton solution of Eq.~2.1! with d350.

Until now we have only calculated the form of the leadin

contribution F̃01 outside of the collision region. Howeve
calculation of higher order terms requires knowledge of
5-6
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completez dependence ofF̃01. To achieve this aim let us
integrate Eq.~3.15! from 2` to some generalz. This inte-
gration yields

F̃01~ t,z!52
2ih0hb~113d3b!1/2

~113d3b/2!b

tanh~ h̃b!

cosh~ h̃0!
, ~3.21!

where we have used the initial condition~3.11!.

C. Second order perturbation theory

1. O(d3
2)

The complete solution up to second order is given

C0
t 5exp(ix0)(C̃001C̃011C̃021F̃011F̃02), where the

O(d3
2) initial condition is taken to be exp(ix0)C̃02(h̃0). This

term remainsz independent throughout the entire collision

2. O„1Õb2)

The initial condition for theO(1/b2) term F̃02
(0) is chosen

to coincide with theO(1/b2) term in the z!z021/ubu
asymptotic form of the expansion of the ideal two-solit
solution ~B1!,

F̃02
(0)~ h̃0 ,2`!52

1

2
~da01

(0)in!2C̃002h0dy02
(0)inC̃008 ,

~3.22!

where

dy02
(0)in5

2hb~113d3b!1/2

~113d3b/2!2bubu
, ~3.23!

and C̃008 5dC̃00/dh̃0. In the precollision region one subst

tutes into Eq.~2.1! a solution of the form exp(ix̃0
in)C̃00(h̃0

in)
where

h̃0
in5h0~ t2dy02

(0)in!. ~3.24!

Evidently, exp(ix̃0
in)C̃00(h̃0

in) is a solution of the equation u
to order 1/b2 that satisfies the initial condition~3.22!. Thus,

F̃02
(0)~ h̃0,z<z02 z̃/ubu!52

1

2
~da01

(0)in!2C̃002h0dy02
(0)inC̃008 .

~3.25!

In the collision region theO(1/b2) part of Eq.~3.6! is

]zF̃02
(0)2 i @~] t

22h0
2!F̃0114uC0u2F̃0112C̃0

2F̃01* #

54i uCb0u2F̃0114i C̃00~Cb0Fb1* 1Cb0* Fb1!. ~3.26!

Using Eq.~3.21! for F̃01(t,z) @and a similar expression fo

F̃b1(t,z)] one can show that the only change in the solito

parameters comes from the termi ] t
2F̃01. Equation ~3.26!

can then be reduced to
02660
y

]zF̃02
(0)5

24h0
2hb

2

~113d3b/2!b

tanh~ h̃0!

cosh~ h̃0!cosh2~ h̃b!
. ~3.27!

Integrating over the collision region, and using the init
condition ~3.25! at z5z02 z̃/ubu, one derives

F̃02
(0)~ h̃0 ,z01 z̃/ubu!52

1

2
~da01

(0)in!2C̃002h0dy02
(0)outC̃008 ,

~3.28!

where

dy02
(0)out52dy02

(0)in . ~3.29!

In the post-collision region one can show by argume
similar to the ones used above that

F̃02
(0)~ h̃0 ,z>z01 z̃/ubu!

52
1

2
~da01

(0)in!2C̃002h0dy02
(0)outC̃008 . ~3.30!

Comparing Eq.~3.30! and Eq.~3.25! we see that the only
effect of the collision in order 1/b2 is a position shift~time
retardation! given by

Dy02
(0)5dy02

(0)out2dy02
(0)in52

4hb~113d3b!1/2

~113d3b/2!2bubu
. ~3.31!

Takingd350 we see that Eq.~3.31! coincides with Eq.~B9!
obtained from the 1/b expansion of the two-soliton solutio
of the ideal NLSE. This is also the result obtained by Mo
lenaueret al. in Refs.@13# and@14# for the collision of ideal
solitons.

3. O(d3Õb)

For convenience, the initial condition for theO(d3 /b)

correction termF̃02
(1) is taken to be

F̃02
(1)~ h̃0 ,2`!5 ida01

(0)inC̃01~ h̃0!. ~3.32!

To find F̃02
(1) in the precollision region let us substitut

exp(ix̃0
in)(C̃001C̃01) into Eq. ~2.1!. Obviously, exp(ix̃0

in)C̃01

is a solution of the resulting equation~up to orderd3 /b) that
obeys the initial condition~3.32!. One finds

F̃02
(1)~ h̃0 ,z<z02 z̃/ubu!5 ida01

(0)inC̃01~ h̃0!. ~3.33!

The O(d3 /b) form of Eq. ~3.6! in the collision region is

]zF̃02
(1)54i uCb0u2C̃0114i C̃b0~C̃b11C̃b1* !C̃00. ~3.34!

Fixing c̃05 c̃150 in Eq. ~2.14!, one gets thatC̃b1 is pure
imaginary so that the second term on the rhs of Eq.~3.34! is
identically zero for any value ofz. Notice that even for an

arbitrary choice of these coefficients the real part ofC̃b1 is
an odd function ofz and this term does not give any contr
5-7
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bution when integrated over the collision region. Integrat
Eq. ~3.34! over the collision region while using the initia
condition ~3.33! at z5z02 z̃/ubu, one obtains

F̃02
(1)~ t,z01 z̃/ubu!5 ida01

(0)outC̃01~ h̃0!, ~3.35!

whereda01
(0)out is given by Eq.~3.18!.

In the post-collision region one obtains

F̃02
(1)~ t,z>z01 z̃/ubu!5 ida01

(0)outC̃01~ h̃0!. ~3.36!

Comparing Eqs.~3.36! and~3.33! we see that the only effec
of the collision in orderd3 /b is anO(1/b) change of phase
given by Eq.~3.20!, on top of theO(d3) stationary solution

C̃01.

D. Third order perturbation theory

The complete solution up to the third order of the pert
bation theory is given by

C0
t 5exp~ ix0!~C̃001C̃011C̃021C̃031F̃011F̃021F̃03!.

The O(d3
3) correction is given byC̃03. This term remainsz

independent throughout the collision dynamics. From
discussion of theO(1/b) and O(1/b2) corrections, one
should expect that theO(1/b3) term will only describe ef-
fects that already exist in the ideal soliton collision. In p
ticular, it will not contain any contributions to radiatio
emission, amplitude change, or frequency change. Furt
more, one can show that the only contribution to t
O(d3

2/b) term will describe a change of phase on top of t
stationary solution. Therefore, the only new nontrivial effe
i.e., emission of radiation, can come from theO(d3 /b2)
term.

To analyze theO(d3 /b2) correction, we first write it in
the form

F̃03
(1)5F̃03

(1)NR1 ṽ03, ~3.37!

whereṽ03 is the leading,O(d3 /b2), contribution to radiation

emitted due to the collision andF̃03
(1)NR corresponds to the

nonradiative part. The initial condition forF̃03
(1) is taken to be

F̃03
(1)~ h̃0 ,2`!5F̃03

(1)NR~ h̃0 ,2`!5 ida03
(1)inC̃00~ h̃0!

2
1

2
~da01

(0)in!2C̃01~ h̃0!2h0dy02
(0)inC̃018 ~ h̃0!,

~3.38!

from which it follows that

ṽ03~ h̃0 ,2`!5 ṽ03* ~ h̃0 ,2`!50, ~3.39!

i.e., the initial condition contains no radiation. In Eq.~3.38!,
da03

(1)in is an initial O(d3 /b2) contribution to the phase.
02660
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In the precollision region one substitutes into Eq.~2.1! a

solution of the form exp(ix̂0
in)@C̃00(h̃0)1C̃01(h̃0

in)

1 ṽ03(h̃0)#, where

x̂0
in5a01da01

(0)in1da03
(0)in1h0

2z. ~3.40!

Linearizing the resulting equation with respect tod3 and 1/b
one obtains a linear partial differential equation~PDE!,
which is automatically separated into two parts: one

F̃03
(1)NR and the other forṽ03, which can be written as

~]z2 i L̂ h0
!S ṽ03

ṽ03*
D 50. ~3.41!

To find F̃03
(1)NR we notice that exp(ix̂0

in)@C̃00(h̃0)

1C̃01(h̃0
in)# is anO(d3 /b2) stationary solution of Eq.~2.1!

which obeys the initial condition~3.38!. Thus,

F̃03
(1)NR~ h̃0 ,z<z02 z̃/ubu!

5 ida03
(1)inC̃00~ h̃0!2

1

2
~da01

(0)in!2C̃01~ h̃0!

2h0dy02
(0)inC̃018 ~ h̃0!. ~3.42!

The only solution of Eq.~3.41!, which satisfies the initial
condition ~3.39!, is the trivial solution

ṽ03~ h̃0 ,z<z02 z̃/ubu!5 ṽ03* ~ h̃0 ,z<z02 z̃/ubu!50.
~3.43!

To obtain theO(d3 /b2) correction in the collision region
one considers all theO(d3 /b) terms entering Eq.~3.6!. Then
one obtains

]zF̃03
(1)2 i @~] t

22h0
2!F̃02

(1)14uC00u2F̃02
(1)12C̃00

2 F̃02
(1)* #

54i uCb0u2F̃02
(1)14i C̃b0~C̃b11C̃b1* !F̃01

14i C̃00C̃01~F̃011F̃01* !14i C̃00C̃01* F̃0114i C̃b0

3~F̃b2
(1)1F̃b2

(1)* !C̃0014i C̃b0~F̃b1* 1F̃b1!C̃01

1d3] t
3F̃0114i ~C̃b1F̃b1* 1C̃b1* F̃B1!C̃00. ~3.44!

For the choicec̃05 c̃150 in Eq.~2.14! one can show that the
only terms in Eq.~3.44! contributing to the integral over the

collision region ared3] t
3F̃01 and i ] t

2F̃02
(1) . Thus, Eq.~3.44!

turns into

]zF̃03
(1)2 i ] t

2F̃02
(1)5d3] t

3F̃01. ~3.45!

To solve this equation with the initial conditions~3.42! and
~3.43! one first writes

F̃03
(1)5F̃03

(1)NR11F̃03
(1)R , ~3.46!
5-8
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where

]zF̃03
(1)NR12 i ] t

2F̃02
(1)50 ~3.47!

and

]zF̃03
(1)R5d3] t

3F̃01. ~3.48!

The termF̃03
(1)R5 ṽ031F̃03

(1)NR2 stands for the part ofF̃03
(1)

that contributes to radiation emission, andF̃03
(1)NR5F̃03

(1)NR1

1F̃03
(1)NR2 is its nonradiative part. The termi ] t

2F̃02
(1) in Eq.

~3.47! leads only to a position shift equal toh0Dy02
(0) , with

Dy02
(0) given by Eq.~3.31!, on top of the stationaryO(d3)

single-soliton solutionC̃01. Therefore, the only term in Eq
~3.45! that gives a qualitatively new contribution~radiative

term! is d3] t
3F̃01.

Using Eq.~3.21! for F̃01 one can rewrite Eq.~3.48! in the
following form

]zF̃03
(1)R5

26ih0
3hb

2d3

~113d3b/2!bF 1

cosh~ h̃0!
2

2

cosh3~ h̃0!
G

3
1

cosh2~ h̃b!
. ~3.49!

Integrating Eq.~3.49! over the collision region with the ini-
tial conditions~3.42! and ~3.43!, one obtains

F̃03
(1)R~ t,z01 z̃/ubu!52 iB] h̃0

2
C̃00~ h̃0!

52 iBF 1

cosh~ h̃0!
2

2

cosh3~ h̃0!
G ,

~3.50!

where the coefficientB is defined by

B5
6h0

3hb~113d3b!1/2d3

~113d3b/2!2bubu
. ~3.51!

Notice that the termF̃03
(1)R is of the same form that would b

generated by a variation with respect toz in the second orde
dispersion coefficient:Dd}B. It follows that the source term
that gives the leading contribution to the collision-induc
radiation emission can be equivalently described as a
change in the second order dispersion coefficient occur
over the collision region. One can write Eq.~3.50! in the
following form
02660
st
g

S F̃03
(1)R~ t,z01 z̃/ubu!

F̃03
(1)R* ~ t,z01 z̃/ubu!

D 52 iBF 1

cosh~ h̃0!
2

2

cosh3~ h̃0!
G

3S 1

21D . ~3.52!

Expanding the rhs of Eq.~3.52! in terms of the eigenfunc-
tions of the operatorL̂h0

, one arrives at

2 iBF 1

cosh~ h̃0!
2

2

cosh3~ h̃0!
G S 1

21D
5 iB f ~ h̃0!1S ṽ03~ t,z01 z̃/ubu!

ṽ03* ~ t,z01 z̃/ubu!
D , ~3.53!

where the leading contribution to the emitted radiation az

5z01 z̃/ubu is given by

S ṽ03~ t,z01 z̃/ubu!

ṽ03* ~ t,z01 z̃/ubu!
D 522iB

tanh2~ h̃0!

cosh~ h̃0!
S 1

21D
5BE

2`

1`

ds@as~z01 z̃/ubu! f s~ h̃0!

1as* ~z01 z̃/ubu! f̄ s~ h̃0!#.

The expansion coefficientsas(z01 z̃/ubu) appearing in Eq.
~3.54! are given by

as~z01 z̃/ubu!5
2 i ~s1 i !2

4 cosh~ps/2!
, ~3.54!

where s5k/h0. From Eq. ~3.54! it follows that

F̃03
(1)NR2(h̃0 ,z01 z̃/ubu)5 iBC̃00(h̃0). This result combined

with the result obtained from integration of Eq.~3.46! over
the collision region gives

F̃03
(1)NR~ h̃0 ,z01 z̃/ubu!5 ida03

(1)outC̃00~ h̃0!

2
1

2
~da01

(0)in!2C̃01~ h̃0!

2h0dy02
(0)outC̃018 ~ h̃0!, ~3.55!

whereda03
(1)out is anO(d3 /b2) correction to the phase. From

Eqs.~3.52!, ~3.53!, and~3.55! one finds that the projection

of F̃03
(1)(h̃0 ,z01 z̃/ubu) on the eigenmodesf 2 and f 3 are zero.

This means that the soliton phase velocity and amplitude
not change at this order of the theory. The result for
soliton amplitude is consistent with the conservation law
the total energy, which requiresh511O(d3

2/b4) for both
solitons. ~See Ref.@11# where a similar situation was dis
cussed.!
5-9
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In the post-collision region one substitutes into Eq.~2.1! a

solution of the form exp(ix̂0
out)@C̃00(h̃0)1C̃01(h̃0

out)
1 ṽ03(h̃0)#, wherex̂0

out is given by

x̂0
out5a01da01

(0)out1da03
(1)out1h0

2z, ~3.56!

andh̃0
out5h0(t2dy02

(0)out). By the same arguments given fo
the free propagation region before the collision, the lin

PDE separates into two equations: one forF̃03
(1)NR , and the

other forṽ03, which is Eq.~3.41!. Using the initial condition
~3.55! one finds

F̃03
(1)NR~ h̃0 ,z>z01 z̃/ubu!

5 ida03
(1)outC̃00~ h̃0!

2
1

2
~da01

(0)in!2C̃01~ h̃0!2h0dy02
(0)outC̃018 ~ h̃0!.

~3.57!

One expressesṽ03 via

S ṽ03~ t,z!

ṽ03* ~ t,z!
D 5BE

2`

1`

ds@as~z! f s~ h̃0!1as* ~z! f̄ s~ h̃0!#,

~3.58!

and calculates the dynamics of the coefficientsak(z). Pro-
jecting Eq.~3.41! on the eigenfunctions ofL̂h0

one gets

]zak~z!2 i ~k21h0
2!ak~z!50. ~3.59!

Integrating this last equation overz and changing fromak to
as one gets

as~z>z01 z̃/b!5as~z01 z̃/b!exp@ ih0
2~s211!~z2z0!#.

~3.60!

Equations~3.54! and ~3.60! describe the dynamics of th
term ṽ03, which is the leading contribution responsible f
radiation. The dependence ofuṽ03u/B on time t for four val-
ues ofz, z0 ~i.e., immediately after collision!, z5z011, z
5z012, andz5z015, is shown in Fig. 3.

Sinceṽ03;O(d3 /b2), the leading contribution to the ra
diation intensity emitted due to the collision is of ord
d3

2/b4. This contribution is given by

E 06
R 5E

2`

`

dt$uṽ03~ t,z!u21@cross terms, oscillating withz#%,

~3.61!

where cross terms include mixed products, such asṽ04
(1)F̃01,

ṽ05
(1)C̃01, etc., which necessarily oscillate withz. The contri-

butions toE 06
R consist of a constant term originating fro

integration overt of uṽ03u2 as well asz-dependent terms
originating from integration overt of both uṽ03u2 and the
cross terms. Since the total energy of the soliton is conse
after the collision, thez dependence of the emitted radiatio
leads to anO(d3

2/b4) z dependence of the soliton’s ampl
02660
r

ed

tude. It is possible to show that forz@z011, all z dependent
contributions toE 06

R decay algebraically with (z2z0). Thus,
far away from the collision region the only nonvanishin
contribution toE 06

R is

E 06
R ~z@z011!5

2pB2

h0
E

2`

`

dsuasu25
16B2

15h0
. ~3.62!

The details of this calculation are presented in Appendix
which also contains an analysis of thez@z011 asymptotic
behavior of thez-dependent contributions originating from
integration overt of all other terms inuṽ03u2.

For t@1 and (z2z0)@1, that is far from the soliton and
far from the collision region, Eq.~3.41! for ṽ03 reduces to the
linear wave equation~for v03)

i ]zv031] t
2v0350. ~3.63!

Taking the limit t@1 and (z2z0)@1 in expression~3.10!
for ṽ03(t,z), while using Eqs.~3.54! and Eq. ~3.60!, one
derives

v03~ t,z!5
2B

4h0@ i ~z2z0!#1/2F12
i t

h0~z2z0!G
3expS i t 2

4~z2z0! D1OS 1

~z2z0!3/2D .

~3.64!

It is also easy to check that the function given by Eq.~3.64!
satisfies the linear wave equation~3.63!.

IV. DISCUSSION AND CONCLUSIONS

We start this last section by presenting some estimati
for the value and intensity of the inelastic collision effec

FIG. 3. Absolute value of the radiation profile function norma

ized toB, i.e., uv03u/B5uṽ03u/B, is shown as a function oft, for four
values ofz: z5z0 ~solid!, z5z011 ~dashed!, z5z012 ~dotted!,
andz5z015 ~dash-dotted!.
5-10
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We use the results~3.62! and ~3.51! to obtain specific pre-
dictions for an optical fiber setup with distributed amplific
tion compensating losses or with lumped amplification a
dispersion tapered fibers. Takingh051 and requiring that
the widths of the colliding solitons are equal~bit rates should
be the same in all the channels! one obtainshb5(1
13d3b)1/2. Then, for the values specified in Sec. II on
derives,E 06

R '4.831026, for the fraction of the total radia
tion emitted by the soliton in the reference channel relat
to the total energy of the bare~ideal! soliton. In addition,
neglecting the decrease in the soliton amplitude, the t
energy emitted by the reference channel soliton as a resu
many collisions with solitons from theb channel grows lin-
early with the number of collisions. Thus, for the paramet
introduced above the average distance passed by the so
until it experiences 23104 collisions and loses about 10% o
its energy is approximately 2500 km.

Let us continue discussion of the results. We have alre
seen that the source term that gives the leading contribu
into the collision-induced radiation emission has the form
an effective fast change in the second order dispersion c
ficient. Another interesting feature of the collision is that t
leading contributions to the observed effects come fr

terms in the equations that involveF̃01. Thus, the leading,
O(1/b), contribution to phase shift, which is due to the te

4i uCb0u2C̃00, is simply given byF̃01. Then, the leading,

O(1/b2), contribution to position shift is due to the] t
2F̃01

term. Finally, the leading,O(d3 /b2), contribution to the ra-

diation emission is due to thed3] t
3F̃01 term that does no

exist in the ideal two-soliton collision problem. Another r
lated feature of the problem is that theO(d3) stationary

single soliton solution of Eq.~2.1! C̃01 behaves like an idea
soliton in the collision. It acquires anO(1/b) phase shift due

to the 4i uCb0u2C̃01 term and anO(1/b2) position shift due

to the] t
2F̃02

(1) term, but does not give a contribution to emi
sion of radiation up to third order of the perturbation theo
One can expect that the leading contribution to radiat

from C̃01 will come only in orderd3
2/b2 from the term

d3] t
3F̃02

(1) .
Even though the effect of a single collision is relative

small ~of third order!, the accumulated effect of multipl
collisions of a single soliton in the reference channel w
many solitons from different frequency channels can be v
important. One obvious result of multiple collisions is th
accumulated loss of energy that was already discus
above. Another effect, which might be much more severe
the radiation-induced interaction between solitons propa
ing in the same frequency channel, due to multiple collisio
with solitons from all other channels. To study this effe
one can consider the solitons in all other channels as a p
dorandom sequence of pulses. Then propagation of soli
in a given channel is described by a perturbed NLSE,
which the perturbative term has the form of the radiat
source term appearing on the rhs of Eq.~3.50! multiplied by
a z-dependent function that describes the quasirandom na
of the multiple collisions. One finds that this kind of pertu
02660
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bative correction is identical to the one following from th
equation

i ]zC1@11j~z!#] t
2C12CuCu250, ~4.1!

which explains pulse propagation in fibers with weak dis
der j(z) in the second order dispersion coefficient. Let
consider, for example, the effect of a pseudorandom
quence of pulses from channelb on pulses in the zero fre
quency channel. In this casej(z) can be written as

j~z!5^j~z!&1m~z!, ~4.2!

where the averagêj(z)& gives anO(d3 /b) constant correc-
tion to the second order dispersion coefficient. The te
m(z) in the last equation is a zero mean Gaussian rand
function, characterized by

^m~z!m~z8!&5Dd~z2z8!, ~4.3!

where the disorder strengthD is given by

D[@2q~12q!b̃B2#/T. ~4.4!

In Eq. ~4.4! B5B(b) is the interchannel interaction intensit
defined in Eq.~3.51!, b̃5(113d3b/2)b, T is the size of a
slot allocated for a soliton, andq is the average number o
occupied slots in channelb. We assumed here that the typ
cal distancez* traveled by a zero channel soliton betwe
any two subsequent collision events,T/(2qb̃), is short, so
that thed-correlated character of the effective disorder te
j in z is justified. To account for the effect of many channe
one should modify the definition ofD introducing summa-
tion over allowed~and probably equidistant! b on the rhs of
Eq. ~4.4!. This set of observations means that results
tained in Ref.@11# for the system given by Eqs.~4.1! and
~4.3! directly apply to the study of soliton propagation und
multiple interactions with solitons from other channels.
particular, one should expect the emergence of long ran
but zero average, radiation-mediated intrachannel inte
tion, leading to soliton jitter.

Let us now make some general remarks. It is importan
stress that the study presented in this paper suggests a
eral recipe for studying fast inelastic collisions between s
tons ~pulses!. The first step is to obtain a stationary singl
soliton solution of the perturbed NLSE. For a variety
problems relevant for nonlinear fiber optics such station
solutions exist and are stable, at least in some range of
rameters. This solution is then used as an initial condition
the collision problem. Using the double perturbation theo
presented here, one can understand all of the effects of
lisions. Fast soliton collisions in the presence of Raman s
tering is one such interesting as yet unexplored proble
~Raman scattering effects should be significant for propa
tion and interaction of very short pulses.! One can also apply
this perturbation method to study fast non-ideal collisions
soliton-type solutions of equations other then the NLSE.
5-11
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APPENDIX A: KAUP’S PERTURBATION THEORY

In this appendix we give a summary of the theory deriv
by Kaup @7# for perturbations near an ideal soliton. Subs
tuting

c5@cosh21~ t !1v#exp~ iz1 ia!,

into the ideal NLSE and expanding the result overv one
finds

i ]zS v

v* D 1L̂S v

v* D 50, ~A1!

where the operatorL̂ is

L̂5~] t
221!ŝ31

2

cosh2@ t#
~2ŝ31 i ŝ2!, ~A2!

and the standard notations for the Pauli matrices,ŝ1,2,3, are
used.L̂ satisfies the following set of relations

ŝ1L̂ŝ152L̂* , L̂15ŝ3L̂ŝ3 . ~A3!

The eigenset of the operatorL̂ solves

L̂ f 5l f , ~A4!

wheref is an eigenfunction correspondent to the eigenva
l. A general solution of Eq.~A4! is

f k5exp@ ikt#H 12
2ik exp@2t#

~k1 i !2 cosh@ t#
J S 0

1D
1

exp@ ikt#

~k1 i !2 cosh2@ t#
S 1

1D , lk5k211, ~A5!

wherek runs from2` to 1`. According to Eq.~A3!, f̄ k

[ŝ1f k* are the other eigenfunctions ofL̂,

f̄ k5exp@2 ikt#H 11
2ik exp@2t#

~k2 i !2 cosh@ t#
J S 1

0D
1

exp@2 ikt#

~k2 i !2 cosh2@ t#
S 1

1D , lk52~k211!. ~A6!

The eigenset ofL̂ also contains the following marginall
stable modes:
02660
s.
s.
i-
on

d
-

e

f 05
1

cosh@ t# S 1

21D , l050;

f 15S 1

1D tanh@ t#

cosh@ t#
, l150. ~A7!

The existence of double poles atk56 i means that two more
functions must be added to the eigenset for completenes

f 25
t

cosh@ t# S 1

21D , L̂ f 2522 f 1 ; ~A8!

f 35
t tanh@ t#21

cosh~ t ! S 1

1D , L̂ f 3522 f 0 . ~A9!

f k
1ŝ3 , f̄ k

1ŝ3 are the left eigenfunctions ofL̂, which satisfy

E
2`

1`

dt f̄k
1ŝ3 f̄ q52pd~k2q!, ~A10!

E
2`

1`

dt fk
1ŝ3f q522pd~k2q!, ~A11!

E
2`

1`

dt f2
1ŝ3f 152, E

2`

1`

dt f0
1ŝ3f 3522. ~A12!

Let us obtain relations between infinitesimal changes
the four parameters of the soliton and the four eigenmode
L̂. For this purpose, consider the most general form of
single soliton solution of the ideal NLSE in the referen
channel

cs5
h exp~ ia1 ih2z!

cosh~ x̃!
, ~A13!

wherex̃5h(t2y). Let us denote

c̃s5
h

cosh~ x̃!
, ~A14!

and calculate the infinitesimal changesdc̃s originating from
infinitesimal changes ina, y, b, andh. For da!1 anddy
!1 one obtains

S dc̃s

dc̃s*
D

da

5 ihda f 0~ x̃! ~A15!

and

S dc̃s

dc̃s*
D

dy

5h2dy f1~ x̃!, ~A16!

respectively. These two relations are used throughout the
to identify small changes in phase and position induced
the collision. For the sake of completeness we also give h
the corresponding relations fordb!1 and dh!1. These
relations are
5-12
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S dc̃s

dc̃s*
D

db

5 idb f 2~ x̃!12hzdb f 1~ x̃! ~A17!

and

S dc̃s

dc̃s*
D

dh

52dh f 3~ x̃!12ih2zdh f 0~ x̃!, ~A18!

respectively.
cy

02660
APPENDIX B: ASYMPTOTICS OF THE EXACT
TWO-SOLITON SOLUTION AT 1 Õb™1

In this appendix we discuss the asymptotics of the ex
two-soliton solution for the ideal NLSE. This analysis is us
as the starting point for the derivation of the double pert
bation method presented in Sec. III. It also serves as a be
mark for calculations performed within the framework
this double perturbation theory.

The exact two-soliton solution of the ideal NLSE is give
by @15#
c two5
h1 exp~ ix1!$@h1

22h2
21b12

2 #coshh212ih2b12sinhh2%

@h1
21h2

21b12
2 #coshh1 coshh222h1h2@cosx121sinhh1 sinhh2#

1
h2 exp~ ix2!$@h2

22h1
21b12

2 #coshh122ih1b12sinh~h1!%

@h1
21h2

21b12
2 #coshh1 coshh222h1h2@cosx121sinhh1 sinhh2#

, ~B1!
-

x12[x12x2 , b12[b12b2 , hj[h j~ t2yj22b j z!,

x j[a j1b j~ t2yj !1~h j
22b j

2!z, ~B2!

where j 51,2 correspond to the two different frequen
channels. The collision of the solitons occurs at

z052
t12t2

2~b12b2!
. ~B3!

Taking the limit 1/ub12b2u!1 in Eq. ~B1!, we obtain

c two5
h1 exp~ ix1!

cosh~h1! F11
2ih2 tanh~h2!

~b12b2!

2
2h2

222h1h2 tanh~h1!tanh~h2!2h2
2 cosh22~h2!

~b12b2!2 G
1

h2 exp~ ix2!

cosh~h2! F12
2ih1 tanh~h1!

~b12b2!

2
2h1

222h1h2 tanh~h1! tanh~h2!2h1
2 cosh22~h1!

~b12b2!2 G
1

h1
2h2 exp@ i ~2x12x2!#

~b12b2!2 cosh2~h1!cosh~h2!

1
h1h2

2 exp@ i ~2x22x1!#

~b12b2!2cosh~h1!cosh2~h2!
1OS 1

ub12b2u3
D .

~B4!
Notice that the last two terms on the rhs of Eq.~B4! corre-
spond to oscillations in channels 2b12b2 and 2b22b1,
respectively. Thus, the two-soliton solutionc two can be writ-
ten in the form

c two5cb1
1cb2

1fb1
1fb2

1f2b12b2
1f2b22b1

1O~1/ub12b2u3!, ~B5!

wherecb1
andcb2

are theO(1) single-soliton solutions of

the ideal NLSE in channelsb1 andb2, respectively, which
are given by Eq.~2.2!. The termsfb1

and fb2
are correc-

tions of leading order 1/ub12b2u to these single-soliton so
lutions in channelsb1 and b2, respectively. The terms
f2b12b2

and f2b22b1
are corrections of order 1/ub12b2u2

in channels 2b12b2 and 2b22b1, respectively. Provided
ub12b2u@1, expression~B4! for c two is valid for any value
of z, including the collision region.

Let us consider the asymptotic behavior of solution~B4!
far away from the collision point, that is atuz2z0u@1/ub1
2b2u. In the regionz!z021/ub12b2u, which corresponds
to the situation before the collision, expression~B4! takes the
following form:

c two.
h1 exp~ ix1!

cosh~h1! F17
2ih2

~b12b2!

2
2h2

262h1h2 tanh~h1!

~b12b2!2 G1
h2 exp~ ix2!

cosh~h2!

3F17
2ih1

~b12b2!
2

2h1
272h1h2 tanh~h2!

~b12b2!2 G ,

z!z021ub12b2u, ~B6!
5-13
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where the upper and lower plus/minus signs correspon
b12b2.0 andb12b2,0, respectively. In the same man
ner, in the regionz@z011/ub12b2u, i.e., after the collision,
one obtains

c two.
h1 exp~ ix1!

cosh~h1! F16
2ih2

~b12b2!

2
2h2

272h1h2 tanh~h1!

~b12b2!2 G1
h2 exp~ ix2!

cosh~h2!

3F16
2ih1

~b12b2!
2

2h1
262h1h2 tanh~h2!

~b12b2!2 G ,

z@z011/ub12b2u. ~B7!

An immediate consequence of Eqs.~B6! and ~B7! is that
outside the collision regionc two can be written as a sum o
two single-soliton solutions. In fact, using Eq.~B1! one can
show that the last statement is valid for any value ofub1
2b2u.0. Moreover, comparing these last two expressio
while using Eqs.~A15! and ~A16!, one finds that the only
effects of a collision between two ideal solitons up to ord
1/ub12b2u2 is anO(1/ub12b2u) phase shift given by

Da15
4h2

ub12b2u
, Da25

4h1

ub12b2u
, ~B8!

and anO(1/ub12b2u2) position shift given by

Dy156
4h2

~b12b2!2
, Dy257

4h1

~b12b2!2
. ~B9!

Notice that the phase shift does not depend on the sig
(b12b2), while the position shift does. Similar analysis c
be carried out for Eq.~2.1! with d3Þ0, but taking into ac-
count only terms of order 1~with respect tod3) in the exact
two-soliton solution. The expressions for the phase shift
the position shift obtained in this manner coincide with t
ones given by Eqs.~3.20! and ~3.31!.

APPENDIX C: TOTAL RADIATION EMITTED

We present here a detailed calculation of the leading o
contributionE 06

R to the radiation emitted as the result of co
lision. As explained in Sec. III D the only nonvanishing co
tribution to E 06

R comes from the integral

I R5E
2`

`

dtuṽ03~ t,z!u2. ~C1!
02660
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Using Eq.~3.58! one finds

I R5
B2

h0
E

2`

`

dh̃0E
2`

`

dsE
2`

`

dp@asapf s1f p21asap* f s1 f̄ p2

1as* apf̄ p1f s21as* ap* f̄ s1 f̄ p2#. ~C2!

Subsequent integration overh̃0 results in

I R5
2pB2

h0
E

2`

`

dsuasu21F1G, ~C3!

where

F5
pB2

48h0
E

2`

` E
2`

`

dsdpexp@ ih0
2~s22p2!~z2z0!#

3
~s2p!@~s2p!214#

cosh~ps/2!cosh~pp/2!sinh@p~s2p!/2#
~C4!

and

G52
pB2

48h0
E

2`

` E
2`

`

dsdpcos@h0
2~s21p212!~z2z0!#

3
~s1p!~s21p224sp22!

cosh~ps/2!cosh~pp/2!sinh@p~s1p!/2#
. ~C5!

ConsiderF in the limit z@z011. Since in this limit the
exponential factor in the integrand on the rhs of Eq.~C4! is
rapidly oscillating~both in s and p), the major contribution
to this term comes from the regionusu!1 and upu!1. In-
deed, whens;p ~or s;2p) and neithers nor p are small
this integral is exponentially suppressed because of
1/cosh(ps/2) and 1/cosh(pp/2) factors. Then, expanding a
the terms in the integrand, except those with oscillating
ponent, around (s,p)5(0,0), one finds that forz@z011 the
termF decays like 1/(z2z0). Similarly, one can show that in
the limit z@z011 the termG is oscillating, and that the
amplitude of the oscillations is bounded by an envelope
caying like 1/(z2z0). Hence, the only nonvanishing contr
bution to I R , and thus toE 06

R , at z@z011 is given by

E 06
R ~z@z011!5

2pB2

h0
E

2`

`

dsuasu25
16B2

15h0
, ~C6!

which is exactly Eq.~3.62!. In a similar manner one can
show that the oscillating cross terms appearing in the in
grand on the rhs of Eq.~3.61! vanish forz@z011.
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